7.4 Décomposition en valeurs singulières

Dans le cas plus général des matrices rectangulaires $A \in M_{m \times n}(\mathbb{R})$, il n'existe pas de décomposition $A = PDP^{-1}$ avec P inversible et D diagonale. Mais on peut factoriser A en

$$A = U\Sigma V^T$$

où Σ est diagonale par blocs et U et V sont orthogonales.

Valeurs singulières

Soit $A \in M_{n \times n}(\mathbb{R})$ une matrice symétrique. La valeur absolue des valeurs propres de A mesure la façon dont A étire ou comprime les vecteurs propres :

Soit $A \in M_{m \times n}(\mathbb{R})$ une matrice rectangulaire. On sait que $A^T A$ est symétrique, donc diagonalisable en base orthogonale. Par conséquent, il existe une base $(\vec{v}_1, \dots, \vec{v}_n)$ orthonormale de \mathbb{R}^n formée de vecteurs propres de $A^T A$.

Soient $\lambda_1, \ldots, \lambda_n$ les valeurs propres correspondantes. Il se peut qu'on ait $\lambda_i = \lambda_j$ pour certaines valeurs de i et de j. On a Définition 72 (valeurs singulières).

Soit $A \in M_{m \times n}(\mathbb{R})$ une matrice. Les valeurs singulières de A sont les racines des valeurs propres de $A^T A$. On les note

Remarques

Exemple

Théorème 76. Soit $A \in M_{m \times n}(\mathbb{R})$ une matrice et $(\vec{v}_1, \dots, \vec{v}_n)$ une base orthonormée de \mathbb{R}^n formée de vecteurs propres de A^TA . Soient $\lambda_1 \geq \dots \geq \lambda_n \geq 0$ les valeurs propres correspondantes. Supposons que A possède r valeurs singulières non nulles. Alors

\mathbf{R}	\mathbf{em}	ar	d.	u	e

Décomposition en valeurs singulières (SVD)

Théorème 77. Soit $A \in M_{m \times n}(\mathbb{R})$ une matrice de rang r. Il existe une matrice $\Sigma \in M_{m \times n}(\mathbb{R})$ diagonale par blocs, une matrice $U \in M_{m \times m}(\mathbb{R})$ orthogonale et $V \in M_{n \times n}(\mathbb{R})$ orthogonale telles que

$$A = U\Sigma V^T.$$

De plus, Σ est de la forme

Remarque

Preuve

Exemple